In this Quantum Physics course, you will learn about the primary perturbative methods in quantum mechanics: degenerate and non-degenerate time-independent perturbation theory, the semi-classical WKB approximation, time-dependent perturbation theory, the adiabatic approximation, and scattering theory. Together, these approximation methods represent a valuable set of tools that are broadly applicable across almost all of physics. We will use these methods to study a variety of systems that do not admit analytic solutions, including the fine structure of hydrogen, tunneling rates, radiative decay and molecules. We will also investigate the quantum mechanical description of a particle in a magnetic field, and discuss the symmetries associated with multi-particle systems in detail.
Show More
This is the final course of a series of courses on edX:
- 8.04 Quantum Mechanics
- 8.05 Mastering Quantum Mechanics
- 8.06 Approximation Methods in Quantum Mechanics
The course is based on the MIT course, 8.06: Quantum Mechanics III. At MIT, 8.06 is the final course in a three-course undergraduate sequence in Quantum Mechanics. 8.06 is a capstone in the education of physics majors, preparing them for advanced and specialized study in any field related to quantum physics.
Prerequisites
Students should be familiar with quantum mechanics at the level of 8.05x Mastering Quantum Mechanics.